Математический анализ Неопределенный интеграл Определенный интеграл Пределы

Современная математика пределы функции интегралы

В аксиоматическом построении математической теории предварительно выбирается некоторая система неопределяемых понятий и отношения между ними. Эти понятия и отношения называются основными.

Современная математика

Все созданные в 17 и 18 вв. разделы математического анализа продолжали с большой интенсивностью развиваться в 19 и 20 вв. Чрезвычайно расширился за это время и круг их применения к задачам, выдвигаемым естествознанием и техникой. Однако помимо этого количественного роста с конца 18 и в начале 19 вв. в развитии математики наблюдается и ряд существенно новых черт.

Накопленный в 17 и 18 вв. огромный фактический материал привел к необходимости углубленного логического анализа и объединения его с новых точек зрения. Связь математики с естествознанием, оставаясь по существу не менее тесной, приобретает теперь более сложные формы. Большие новые теории возникают не только в результате непосредственных запросов естествознания и техники, но также из внутренних потребностей самой математики. Таково в основном было развитие функции комплексного переменного теории, занявшей в начале и середине 19 в. центральное положение во всем математическом анализе. Другим замечательным примером теории, возникшей в результате внутреннего развития самой математики, явилась геометрия Лобачевского.

В более непосредственной и непрерывной зависимости от запросов механики и физики происходило формирование векторного и тензорного исчислений. Перенесение векторных и тензорных представлений на бесконечномерные величины происходит в рамках функционального анализа и тесно связывается с потребностями современной физики.

Таким образом, в результате как внутренних потребностей математики, так и новых запросов естествознания круг количественных отношений и пространственных форм, изучаемых математикой, чрезвычайно расширяется; в него входят отношения, существующие между элементами произвольной группы, векторами, операторами в функциональных пространствах, все разнообразие форм пространств любого числа измерений и т. п.

Существенная новизна начавшегося в 19 в. этапа развития математики состоит в том, что вопросы необходимого расширения круга подлежащих изучению количественных отношений и пространственных форм становятся предметом сознательного и активного интереса математиков. Если прежде, например, введение в употребление отрицательных и комплексных чисел и точная формулировка правил действий с ними требовали длительной работы, то теперь развитие математики потребовало выработки приемов сознательного и планомерного создания новых геометрических и алгебраических систем.

Период элементарной математики

Только после накопления большого конкретного материала в виде разрозненных приемов арифметических вычислений, способов определения площадей и объемов и т. п. возникает математика как самостоятельная наука с ясным пониманием своеобразия ее метода и необходимости систематического развития ее основных понятий и предложений в достаточно общей форме.

Поверхности второй степени

Канонические уравнения Сфера

Поверхности второй степени Сечения конуса плоскостями: в плоскости, пересекающей все прямолинейные образующие, - эллипс; в плоскости, параллельной одной прямолинейной образующей, - парабола; в плоскости, параллельной двум прямолинейным образующим, - гипербола; в плоскости, проходящей через вершину конуса, - пара пересекающихся прямых или точка (вершина).

Аксиоматическое построение математики. Изоморфизм

Каждая математическая теория изучает множества с теми или иными отношениями элементов, обладающими теми или иными свойствами. Содержание теории заключается в определении одних отношений (или понятий) через другие и в доказательстве одних свойств этих отношений (или понятий) на основании других свойств. Так, в теории упорядоченных множеств одно из отношений "больше" и "меньше" определяется через другое, с их помощью определяется понятие "первый элемент" и т. д.(Упорядоченные множества); в теории колец отношение a - b = c и понятие "нуль" определяются через отношение a + b = c.

Впервые аксиоматическое построение математической теории было предпринято Евклидом в построении геометрии.

Основные правила интегрирования