Вещество в электростатическом поле
Теоретическая информатика Моделирование систем Математическая модель Аналитическая модель Имитационное моделирование Метод суперпозиции метод Монте-Карло Теория массового обслуживания Пензавзгляд- новости г пенза. уравнения Колмогорова Формула Литтла Пример СМО

Другой аспект системной динамики заключается в предположении, что организация более эффективно представляется в терминах лежащих в ее основе потоков, нежели в терминах отдельных функций. Потоки людей, денег, материалов, заявок и оборудования, а также интегрированные потоки информации могут быть выявлены во всех организациях.

Аналитическая модель может быть исследована следующими методами:

а) аналитическим, когда стремятся получить в общем виде явные зависимости для искомых характеристик; б) численным, когда, не умея решать уравнений в общем виде, стремятся получить числовые результаты при конкретных начальных данных; в) качественным, когда, не имея решения в явном виде, можно найти некоторые свойства решения (например, оценить его устойчивость).

При имитационном моделировании алгоритм, реализующий модель, воспроизводит процесс функционирования системы S во времени, причем имитируются элементарные явления, составляющие процесс, с сохранением их логической структуры и последовательности протекания во времени. Это позволяет по исходным данным получить сведения о состояниях процесса в определенные моменты времени, а по ним оценить характеристики системы S. Применимость мер защиты Введение мер защиты может создать дополнительные трудности или неудобства для пользователей. Если эти меры слишком усложняют работу, то, вероятнее всего, эффективность их использования будет низкой. Для большинства пользователей обеспечение защиты не является основной функциональной обязанностью.

Основным преимуществом имитационного моделирования по сравнению с аналитическим является  возможность решения более сложных задач. Имитационные модели позволяют достаточно просто учитывать такие факторы как наличие дискретных и непрерывных элементов, нелинейные характеристики элементов системы, многочисленные случаи воздействия и др., которые часто создают трудности при аналитических исследованиях. В настоящее время имитационное моделирование - наиболее эффективный метод исследования больших систем, а часто и единственный практически доступный метод получения информации о поведении системы, особенно на этапе ее проектирования.

Когда результаты, полученные при воспроизведении на имитационной модели процесса функционирования системы S, являются реализациями случайных величин и функций, тогда для нахождения характеристик процесса требуется его многократное воспроизведение с последующей статистической обработкой информации, и целесообразно в качестве метода машинной реализации имитационной модели использовать метод статистического моделирования. Первоначально был разработан метод статистических испытаний, представляющий собой численный метод, который применялся для моделирования случайных величин и функций,  вероятностные характеристики которых совпадали с решениями аналитических задач (такая процедура получила название метода Монте-Карло). Затем этот прием стали применять и для машинной имитации с целью исследования характеристик процессов функционирования систем, подверженных случайным воздействиям.
Аналитическое моделирование сложных систем, очевидно, имеет ограниченные возможности, что и вызвало к жизни имитационные модели (реализуемые в форме аппаратурных комплексов и программ для ЭВМ).
Теоретическая кибернетика Моделирование систем