Физика Лекции и примеры Поляризация света Поляризационные призмы и поляроиды Элементы квантовой механики Принцип причинности в квинтовой механике Рентгеновские спектры Молекулярные спектры. Оптические квантовые генераторы (лазеры)

[an error occurred while processing this directive]

Элементы физики атомного ядра и элементарных частиц

Элементы физики атомного ядра

Размер, состав и заряд атомного ядра. Массовое и зарядовое числа

Э. Резерфорд, исследуя прохождение a-частиц с энергией в несколько мегаэлектрон-вольт через тонкие пленки золота (см. § 208), пришел к выводу о том, что атом состоит из положительно заряженного ядра и окружающих его электронов. Проанализировав эти опыты, Резерфорд также показал, что атомные ядра имеют размеры примерно 10–14 — 10–15 м (линейные размеры атома примерно 10–10 м).

Атомное ядро состоит из элементарных частиц — протонов и нейтронов (протонно-нейтронная модель ядра была предложена российским физиком Д. Д. Иваненко (р. 1904), а впоследствии развита В. Гейзенбергом).

Протон (р) имеет положительный заряд, равный заряду электрона, и массу покоя тр=1,6726×10–27кг » 1836 тe, где тe — масса электрона. Нейтрон (n) — нейтральная частица с массой покоя тп=1,6749×10–27кг »1839 тe. Протоны и нейтроны называются нуклонами (от лат. nucleus — ядро). Общее число нуклонов в атомном ядре называется массовым числом А.

Атомное ядро характеризуется зарядом Ze, где Z — зарядовое число ядра, равное числу протонов в ядре и совпадающее с порядковым номером химического элемента в Периодической системе элементов Менделеева. Известные в настоящее время 107 элементов таблицы Менделеева имеют зарядовые числа ядер от Z= 1 до Z= 107.

Ядро обозначается тем же символом, что и нейтральный атом: , где Х — символ химического элемента, Z атомный номер (число протонов в ядре), А — массовое число (число нуклонов в ядре).

Сейчас протонно-нейтронная модель ядра не вызывает сомнений. Рассматривалась также гипотеза о протонно-электронном строении ядра, но она не выдержала экспериментальной проверки. Так, если придерживаться этой гипотезы, то массовое число А должно представлять собой число протонов в ядре, а разность между массовым числом и числом электронов должна быть равна зарядовому числу. Эта модель согласовывалась со значениями изотопных масс и зарядов, но противоречила значениям спинов и магнитных моментов ядер, энергии связи ядра и т. д. Кроме того, она оказалась несовместимой с соотношением неопределенностей (см. § 215). В результате гипотеза о протонно-электронном строении ядра была отвергнута.

Так как атом нейтрален, то заряд ядра определяет и число электронов в атоме. От числа же электронов зависит их распределение по состояниям в атоме, от которого, в свою очередь, зависят химические свойства атома. Следовательно, заряд ядра определяет специфику данного химического элемента, т.е. определяет число электронов в атоме, конфигурацию их электронных оболочек, величину и характер внутриатомного электрического поля.

Ядра с одинаковыми Z, но разными А (т. е. с разными числами нейтронов N=A–Z) называются изотопами, а ядра с одинаковыми А, но разными Z—изобарами. Например, водород (Z=1) имеет три изотопа: Н—протий (Z=1, N=0), Н—дейтерий (Z=1, N=1), Н — тритий (Z=1, N=2), олово—десять, и т. д. В подавляющем большинстве случаев изотопы одного и того же химического элемента обладают одинаковыми химическими и почти одинаковыми физическими свойствами (исключение составляют, например, изотопы водорода), определяющимися в основном структурой электронных оболочек, которая является одинаковой для всех изотопов данного элемента. Примером ядер-изобар могут служить ядра Ве, В, С. В настоящее время известно более 2500 ядер, отличающихся либо Z, либо А, либо тем и другим.

Радиус ядра задается эмпирической формулой

 (251.1)

где R0=(1,3¸1,7)10–15 м. Однако при употреблении этого понятия необходимо соблюдать осторожность (из-за его неоднозначности, например из-за размытости границы ядра). Из формулы (251.1) вытекает, что объем ядра пропорционален числу нуклонов в ядре. Следовательно, плотность ядерного вещества примерно одинакова для всех ядер (»1017 кг/м3).

224. Молярная внутренняя энергия Um некоторого двухатомного  газа равна 6,02кДж/моль. Определить среднюю кинетическую энергию <εвр>  вращательного движения одной молекулы этого газа. Газ считать иде­альным.

двухатомный газ

Um=6,02кДж/моль

Средняя кинетическая энергия вращательного движения одной молекулы равна , где k=1.38×10-23Дж/К – постоянная Больцмана, iвр – поступательные степени свободы молекулы (iвр=2 в нашем случае т.к. молекула двухатомная). Поэтому . Нужно найти температуру T.

По определению молярная внутренняя энергия газа равна , где Cv – молярная изохорная теплоемкость азота. Молярная изохорная теплоемкость вычисляется по формуле , где i – число степеней свободы молекулы (для двухатомного газа 3 поступательные и 2 вращательные i=5). Поэтому  . Откуда температура . Подставляем , где NA=k/R=6.02×1023моль-1 – число Авогадро. Поэтому

.

[an error occurred while processing this directive]
Понятие о ядерной энергетике