Переменный ток, текущий через конденсатор емкостью С (R®0, L®0) (рис. 215, в). Если переменное напряжение (149.1) приложено к конденсатору, то он все время перезаряжается, и в цепи течет переменный ток. Так как все внешнее напряжение приложено к конденсатору, а сопротивлением подводящих проводов можно пренебречь, то
Сила тока
(149.7)
где
Величина
![]()
называется реактивным емкостным сопротивлением (или емкостным сопротивлением). Для постоянного тока (w = 0) RС = ¥, т. е. постоянный ток через конденсатор течь не может. Падение напряжения на конденсаторе
(149.8
Определить коэффициент теплоотдачи при кипении воды, текущей в трубе диаметром
мм со скоростью
м/с; плотность теплового потока
Вт/м2; температура насыщения
, чему соответствует давление
бар.
Сравнение выражений (149.7) и (149.8) приводит к выводу, что падение напряжения UС отстает по фазе от текущего через конденсатор тока I на p/2. Это показано на векторной диаграмме (рис. 215, б). Задача на классический закон сложения скоростей. Лекции по физике
4. Цепь переменного тока, содержащая последовательно включенные резистор, катушку индуктивности и конденсатор. На рис. 216, а представлен участок цепи, содержащий резистор сопротивлением R, катушку индуктивностью L и конденсатор емкостью С, к концам которого приложено переменное напряжение (149.1). В цепи возникнет переменный ток, который вызовет на всех элементах цепи соответствующие падения напряжения UR, UL и UC. На рис. 216, б представлена векторная диаграмма амплитуд падений напряжений на резисторе (UR), катушке (UL) и конденсаторе (UC). Амплитуда Um приложенного напряжения должна быть равна векторной сумме амплитуд этих падений напряжений. Как видно из рис. 216, б, угол j определяет разность фаз между напряжением и силой тока. Из рисунка следует, что (см. также формулу (147.16))
(149.9)
Из прямоугольного треугольника получаем
откуда амплитуда силы тока имеет значение
(149.10)
совпадающее с (147.15).
Следовательно, если напряжение в цепи изменяется по закону U = Um cos w t, то в цепи течет ток
(149.11)
где j и Im определяются соответственно формулами (149.9) и (149.10). Величина
(149.12)
называется полным сопротивлением цепи, а величина
– реактивным сопротивлением.
Рассмотрим частный случай, когда в цепи отсутствует конденсатор. В данном случае падения напряжений UR и UL в сумме равны приложенному напряжению U. Векторная диаграмма для данного случая представлена на рис. 217, из которого следует, что
(149.13)
Выражения (149.9) и (149.10) совпадают с (149.13), если в них 1/(wC)=0, т.е. С=¥. Следовательно, отсутствие конденсатора в цепи означает С=¥, а не С=0. Данный вывод можно трактовать следующим образом: сближая обкладки конденсатора до их полного соприкосновения, получим цепь, в которой конденсатор отсутствует (расстояние между обкладками стремится к нулю, а емкость — к бесконечности; см. (94.3)).
119. На сколько переместится относительно берега лодка длиной L=3,5 м и массой M=200кг, если стоящий на корме человек массой m = 80 кг переместится на нос лодки? (Cчитать лодку расположенной перпендикулярно берегу.
L=3,5 м
M=200кг
m = 80 кг
Систему человек — лодка относительно горизонтального направления можно рассматривать как замкнутую. Согласно следствию из закона сохранения импульса, внутренние силы замкнутой системы тел не могут изменить положение центра масс системы. Применяя это следствие к системе человек — лодка, можно считать, что при перемещении человека по лодке центр масс системы не изменит своего положения, т. е. останется на прежнем расстоянии от берега.
Пусть центр масс системы человек—лодка находится на вертикали, проходящей в начальный момент через точку C1 лодки (рис.), а после перемещения лодки – через другую ее точку C2. Так как эта вертикаль неподвижна относительно берега, то искомое перемещение S лодки относительно берега равно перемещению лодки относительно вертикали. А это последнее легко определить по перемещению центра масс О лодки. Как видно из рисунка, в начальный момент точка О находится на расстоянии a1 слева от вертикали, а после перехода человека — на расстоянии a2 справа от вертикали. Следовательно, искомое перемещение лодки S=a1+a2.
Для определения a1 и а2 воспользуемся тем, что результирующий момент сил, действующих на систему относительно горизонтальной оси, перпендикулярной продольной оси лодки, равен нулю. Поэтому для начального положения системы M×g×a1=m×g×(l–a1), откуда
. После перемещения лодки M×g×a2=m×g×(L–a2–l), откуда
. Подставив полученные значения a1 и a2 в S=a1+a2 найдем
. Подставляем числа.
.
S = ?