Физика Лекции и примеры Механические и электромагнитные колебания Амплитуда и фаза вынужденных колебаний Переменный ток Резонанс напряжений Мощность, выделяемая в цепи переменного тока Упругие волны Волновые процессы

Физика Лекции и примеры решения задач контрольной работы

Переменный ток, текущий через конденсатор емкостью С (R®0, L®0) (рис. 215, в). Если переменное напряжение (149.1) приложено к конденсатору, то он все время перезаряжается, и в цепи течет переменный ток. Так как все внешнее напряжение приложено к конденсатору, а сопротивлением подводящих проводов можно пренебречь, то

Сила тока

 (149.7)

где

Величина

называется реактивным емкостным сопротивлением (или емкостным сопротивлением). Для постоянного тока (w = 0) RС = ¥, т. е. постоянный ток через конденсатор течь не может. Падение напряжения на конденсаторе

  (149.8

Определить коэффициент теплоотдачи при кипении воды, текущей в трубе диаметром мм со скоростью  м/с; плотность теплового потока  Вт/м2; температура насыщения , чему соответствует давление  бар.

Сравнение выражений (149.7) и (149.8) приводит к выводу, что падение напряжения UС отстает по фазе от текущего через конденсатор тока I на p/2. Это показано на векторной диаграмме (рис. 215, б). Задача на классический закон сложения скоростей. Лекции по физике

4. Цепь переменного тока, содержащая последовательно включенные резистор, катушку индуктивности и конденсатор. На рис. 216, а представлен участок цепи, содержащий резистор сопротивлением R, катушку индуктивностью L и конденсатор емкостью С, к концам которого приложено переменное напряжение (149.1). В цепи возникнет переменный ток, который вызовет на всех элементах цепи соответствующие падения напряжения UR, UL и UC. На рис. 216, б представлена векторная диаграмма амплитуд падений напряжений на резисторе (UR), катушке (UL) и конденсаторе (UC). Амплитуда Um приложенного напряжения должна быть равна векторной сумме амплитуд этих падений напряжений. Как видно из рис. 216, б, угол j определяет разность фаз между напряжением и силой тока. Из рисунка следует, что (см. также формулу (147.16))

 (149.9)

Из прямоугольного треугольника получаем  откуда амплитуда силы тока имеет значение

  (149.10)

совпадающее с (147.15).

Следовательно, если напряжение в цепи изменяется по закону U = Um cos w t, то в цепи течет ток

  (149.11)

где j и Im определяются соответственно формулами (149.9) и (149.10). Величина

  (149.12)

называется полным сопротивлением цепи, а величина

– реактивным сопротивлением.

Рассмотрим частный случай, когда в цепи отсутствует конденсатор. В данном случае падения напряжений UR и UL в сумме равны приложенному напряжению U. Векторная диаграмма для данного случая представлена на рис. 217, из которого следует, что

  (149.13)

Выражения (149.9) и (149.10) совпадают с (149.13), если в них 1/(wC)=0, т.е. С=¥. Следовательно, отсутствие конденсатора в цепи означает С=¥, а не С=0. Данный вывод можно трактовать следующим образом: сближая обкладки конденсатора до их полного соприкосновения, получим цепь, в которой конденсатор отсутствует (расстояние между обкладками стремится к нулю, а емкость — к бесконечности; см. (94.3)).

119. На сколько переместится относительно берега лодка длиной L=3,5 м и массой M=200кг, если стоящий на корме человек массой m = 80 кг переместится на нос лодки? (Cчитать лодку расположенной перпендику­лярно берегу.

L=3,5 м

M=200кг

m = 80 кг

Систему человек — лодка относительно горизонтального направления можно рассматривать как замкнутую. Согласно следствию из закона сохранения импульса, внутренние силы замкнутой  системы тел не могут изменить положение центра масс системы. Приме­няя это следствие  к системе человек — лодка, можно считать, что при перемещении человека по лодке центр масс системы не изменит своего положения, т. е. оста­нется на прежнем расстоянии от берега.

Пусть центр масс сис­темы человек—лодка нахо­дится на вертикали, прохо­дящей в начальный момент через точку C1 лодки (рис.), а после переме­щения лодки – через дру­гую ее точку C2. Так как эта вертикаль неподвижна относительно берега, то искомое перемещение S лодки относительно берега равно перемещению лодки относительно вертикали. А это последнее легко определить по перемещению цен­тра масс О лодки. Как видно из рисунка, в начальный мо­мент точка О находится на расстоянии a1 слева от верти­кали, а после перехода человека — на расстоянии a2 справа от вертикали. Следовательно, искомое перемеще­ние лодки S=a1+a2.

Для определения a1 и а2 воспользуемся тем, что ре­зультирующий момент сил, действующих на систему от­носительно горизонтальной оси, перпендикулярной про­дольной оси лодки, равен нулю. Поэтому для начального положения системы M×g×a1=m×g×(l–a1), откуда . После перемещения лодки M×g×a2=m×g×(L–a2–l), откуда . Подставив полученные значения a1 и a2 в S=a1+a2 найдем . Подставляем числа. .

S = ?


Элементы физики твердого тела