Физика Лекции и примеры Механические и электромагнитные колебания Амплитуда и фаза вынужденных колебаний Переменный ток Резонанс напряжений Мощность, выделяемая в цепи переменного тока Упругие волны Волновые процессы

Физика Лекции и примеры решения задач контрольной работы

Интерференция волн

Согласованное протекание во времени и пространстве нескольких колебательных или волновых процессов связывают с понятием когерентности. Волны называются когерентными, если разность их фаз остается постоянной во времени. Очевидно, что когерентными могут быть лишь волны, имеющие одинаковую частоту. При наложении в пространстве двух (или нескольких) когерентных волн в разных его точках получается усиление или ослабление результирующей волны в зависимости от соотношения между фазами этих воли. Это явление называется интерференцией волн.

Рассмотрим наложение двух когерентных сферических волн, возбуждаемых точечными источниками S1 и S2 (рис. 221), колеблющимися с одинаковыми амплитудой А0 и частотой w и постоянной разностью фаз. Согласно (154.7),

где r1 и r2 — расстояния от источников волн до рассматриваемой точки В, k — волновое число, j1 и j2 — начальные фазы обеих накладывающихся сферических волн. Амплитуда результирующей волны в точке В по (144.2) равна

Так как для когерентных источников разность начальных фаз (j1 – j2) = const, то результат наложения двух волн в различных точках зависит от величины D = r1 – r2, называемой разностью хода волн.

В точках, где

  (156.1)

наблюдается интерференционный максимум: амплитуда результирующего колебания А=A0/r1 + A0/r2. В точках, где

  (156.2)

наблюдается интерференционный минимум: амплитуда результирующего колебания А=|A0/r1+A0/r2|; m=0, 1, 2, ..., называется соответственно порядком нтерференционного максимума или минимума.

Условия (156.1) в (156.2) сводятся к тому, что

 (156.3)

Выражение (156.3) представляет собой уравнение гиперболы с фокусами в точках S1 и S2. Следовательно, геометрическое место точек, в которых наблюдается усиление или ослабление результирующего колебания, представляет собой семейство гипербол (рис. 221), отвечающих условию (j1 – j2)=0. Между двумя интерференционными максимумами (на рис. 221 сплошные линии) находятся интерференционные минимумы (на рис. 221 штриховые линии).

116. На полу стоит тележка в виде длинной доски, снабженной легкими колесами. На одном конце доски сто­ит человек. Масса его m = 60 кг, масса доски M = 20 кг. С какой скоростью (относительно пола) будет двигаться тележка, если человек пойдет вдоль нее со скоростью (относительно доски) V1 = 1 м/с? Массой колес и тре­нием пренебречь.

M= 20 кг

m = 60 кг

V1 =1 м/с

Воспользуемся законом сохранения импульса: , где M – масса доски, m – масса человека, V1* - скорость человека относительно пола, так как мы работаем в системе отсчета связанной с полом. Нам известна скорость человека относительно доски V1 и скорость доски V2, поэтому . Подставляем в первое уравнение и получаем . Проектируем вектора на ось X и получаем:

 . Из этого уравнения находим искомую скорость:

 .

V2 = ?


Элементы физики твердого тела