Физика Лекции и примеры Механические и электромагнитные колебания Амплитуда и фаза вынужденных колебаний Переменный ток Резонанс напряжений Мощность, выделяемая в цепи переменного тока Упругие волны Волновые процессы

Физика Лекции и примеры решения задач контрольной работы

Дифференциальное уравнение свободных затухающих колебаний (механических и электромагнитных) и его решение. Автоколебания

Рассмотрим свободные затухающие колебания – колебания, амплитуды которых из-за потерь энергии реальной колебательной системой с течением времени уменьшаются. Простейшим механизмом уменьшения энергии колебаний является ее превращение в теплоту вследствие трения в механических колебательных системах, а также омических потерь и излучения электромагнитной энергии в электрических колебательных системах.

Закон затухания колебаний определяется свойствами колебательных систем. Обычно рассматривают линейные системы — идеализированные реальные системы, в которых параметры, определяющие физические свойства системы, в ходе процесса не изменяются. Линейными системами являются, например, пружинный маятник при малых растяжениях пружины (когда справедлив закон Гука), колебательный контур, индуктивность, емкость и сопротивление которого не зависят ни от тока в контуре, ни от напряжения. Различные по своей природе линейные системы описываются идентичными линейными дифференциальными уравнениями, что позволяет подходить к изучению колебаний различной физической природы с единой точки зрения, а также проводить их моделирование, в том числе и на ЭВМ. Магнитное поле в веществе. Гипотеза Ампера о молекулярных токах. Вектор намагничивания. Различные вещества в той или иной степени способны к намагничиванию: то есть под действием магнитного поля, в которое их помещают, приобретать магнитный момент. Одни вещества намагничиваются сильнее, другие слабее. Будем называть все эти вещества магнетиками.

Дифференциальное уравнение свободных затухающих колебаний линейной системы задается в виде

  (146.1)

где s – колеблющаяся величина, описывающая тот или иной физический процесс, d=const — коэффициент затухания, w0 — циклическая частота свободных незатухающих колебаний той же колебательной системы, т. е. при d=0 (при отсутствии потерь энергии) называется собственной частотой колебательной системы.

Решение уравнения (146.1) рассмотрим в виде

 (146.2)

где u=u(t). После нахождения первой и второй производных выражения (146.2) и подстановки их в (146.1) получим

  (146.3)

Решение уравнения (146.3) зависит от знака коэффициента перед искомой величиной. Рассмотрим случай, когда этот коэффициент положителен:

  (146.4)

(если ()>0, то такое обозначение мы вправе сделать). Тогда получим уравнение типа (142.1) ü+w2и=0, решением которого является функция и=А0cos(wt+j) (см. (140.1)). Таким образом, решение уравнения (146.1) в случае малых затуханий ()

  (146.5)

где

 (146.6)

— амплитуда затухающих колебаний, а А0 — начальная амплитуда. Зависимость (146.5) показана на рис. 208 сплошной линией, а зависимость (146.6) — штриховыми линиями. Промежуток времени t=1/d, в течение которого амплитуда затухающих колебаний уменьшается в е раз, называется временем релаксации.

Затухание нарушает периодичность колебаний, поэтому затухающие колебания не являются периодическими и, строго говоря, к ним неприменимо понятие периода или частоты. Однако если затухание мало, то можно условно пользоваться понятием периода как промежутка времени между двумя последующими максимумами (или минимумами) колеблющейся физической величины (рис. 208). Тогда период затухающих колебаний с учетом формулы (146.4) равен

Если A(t) и А(t + Т) — амплитуды двух последовательных колебаний, соответствующих моментам времени, отличающимся на период, то отношение

называется декрементом затухания, а его логарифм

  (146.7)

— логарифмическим декрементом затухания; Ne — число колебаний, совершаемых за время уменьшения амплитуды в е раз. Логарифмический декремент затухания — постоянная для данной колебательной системы величина.

102. Материальная точка движется прямолинейно с ускорением а = 5м/с2. Определить, на сколько путь, пройденный точкой в n-ю секунду, будет больше пути, пройденного в предыдущую секунду. Принять V0= 0.

а = 5м/с2

V0= 0

Уравнение движения записывается в виде . А так как V0=0, то .

Путь пройденный за n-ю секунду равен разности пути пройденного за n секунд и пути пройденного за n–1 секунд: . Поэтому .

Путь пройденный за (n–1)-ю секунду равен разности пути пройденного за (n–1) секунд и пути пройденного за (n–2) секунд: . Поэтому

 .

Откуда .


Элементы физики твердого тела