[an error occurred while processing this directive]Элементы современной физики атомов и молекул
Атом водорода в квантовой механике
Решение задачи об энергетических уровнях электрона для атома водорода (а также водородоподобных систем: иона гелия Не+, двукратно ионизованного лития Li++ и др.) сводится к задаче о движении электрона в кулоновском поле ядра.
Потенциальная энергия взаимодействия электрона с ядром, обладающим зарядом Ze (для атома водорода Z = 1),
(223.1)
где r — расстояние между электроном и ядром. Графически функция U(r) изображена жирной кривой на рис. 302. U(r) с уменьшением r (при приближении электрона к ядру) неограниченно убывает.
Состояние электрона в атоме водорода описывается волновой функцией y, удовлетворяющей стационарному уравнению Шредингера (217.5), учитывающему значение (223.1):
(223.2)
где т — масса электрона, Е — полная энергия электрона в атоме. Так как поле, в котором движется электрон, является центрально-симметричным, то для решения уравнения (223.2) обычно используют сферическую систему координат: r, q, j. Не вдаваясь в математическое решение этой задачи, ограничимся рассмотрением важнейших результатов, которые из него следуют, пояснив их физический смысл. Магнитные свойства вещества Определение в начале 19 века движения электрических зарядов в качестве источника магнитного поля и установление ядерно-электронного строения вещества в начале 20 века предопределило современные представления о невозможности индифферентной реакции на внешнее магнитное поле любых веществ в любом агрегатном состоянии - газообразном, жидком или твердом. Таким образом, все вещества в природе являются магнетиками разных типов.
1. Энергия. В теории дифференциальных уравнений доказывается, что уравнения типа (223.2) имеют решения, удовлетворяющие требованиям однозначности, конечности и непрерывности волновой функции y, только при собственных значениях энергии
(223.3)
т. е. для дискретного набора отрицательных значений энергии.
Таким образом, как и в случае «потенциальной ямы» с бесконечно высокими «стенками» (см. § 220) и гармонического осциллятора (см. § 222), решение уравнения Шредингера для атома водорода приводит к появлению дискретных энергетических уровней. Возможные значения Е1, E2, Е3,... показаны на рис. 302 в виде горизонтальных прямых. Самый нижний уровень Е1, отвечающий минимальной возможной энергии, — основной, все остальные (Еn >Е1, n = 2, 3, ...) — возбужденные (см. § 212). При Е<0 движение электрона является связанным — он находится внутри гиперболической «потенциальной ямы». Из рисунка следует, что по мере роста главного квантового числа n энергетические уровни располагаются теснее и при n=¥ E¥ = 0. При Е>0 движение электрона является свободным; область непрерывного спектра Е>0 (заштрихована на рис. 302) соответствует ионизованному атому. Энергия ионизации атома водорода равна
Выражение (223.3) совпадает с формулой (212.3), полученной Бором для энергии атома водорода. Однако если Бору пришлось вводить дополнительные гипотезы (постулаты), то в квантовой механике дискретные значения энергии, являясь следствием самой теории, вытекают непосредственно из решения уравнения Шредингера.
180. Шарик массой m=60 г колеблется с периодом T=2с. В начальный момент времени смещение шарика х0=4,0 см и он обладает энергией E=0,02 Дж. Записать уравнение простого гармонического колебания шарика и закон изменения возвращающей силы с течением времени.
m=60 г
х0=4 см
Т=2 с
E=0,02 Дж
Уравнение гармонических колебаний
, где x – смещение колеблющейся величины, A – амплитуда колебаний,
- фаза колебаний,
- циклическая частота, φ0 – начальная фаза.
Скорость равна
.
В начальный момент t=0 имеем
и
. Тогда начальная энергия равна
.
Отношение
.
Циклическая частота равна по определению
, где T – период. Поэтому
.
Начальная фаза равна
. Подставляем числа.
.
Теперь найдем амплитуду. Умножим
на
, возведем все в квадрат и сложим с
. Получим следующее:
.
Так как sin2φ+cos2φ=1, то
.
Откуда амплитуда равна
.
Подставляем числа.
.
Поэтому уравнение гармонических колебаний
.
Ускорение равно
. Тогда сила равна
.