Физика Лекции и примеры Уравнение бегущей волны. Интерференция волн Звуковые волны Ультразвук и его применение Электромагнитные волны Элементы электронной оптики Интерференция света Дифракция света Понятие о голографии

[an error occurred while processing this directive]

Элементы современной физики атомов и молекул

Атом водорода в квантовой механике

Решение задачи об энергетических уровнях электрона для атома водорода (а также водородоподобных систем: иона гелия Не+, двукратно ионизованного лития Li++ и др.) сводится к задаче о движении электрона в кулоновском поле ядра.

Потенциальная энергия взаимодействия электрона с ядром, обладающим зарядом Ze (для атома водорода Z = 1),

  (223.1)

где r — расстояние между электроном и ядром. Графически функция U(r) изображена жирной кривой на рис. 302. U(r) с уменьшением r (при приближении электрона к ядру) неограниченно убывает.

Состояние электрона в атоме водорода описывается волновой функцией y, удовлетворяющей стационарному уравнению Шредингера (217.5), учитывающему значение (223.1):

  (223.2)

где т — масса электрона, Е — полная энергия электрона в атоме. Так как поле, в котором движется электрон, является центрально-симметричным, то для решения уравнения (223.2) обычно используют сферическую систему координат: r, q, j. Не вдаваясь в математическое решение этой задачи, ограничимся рассмотрением важнейших результатов, которые из него следуют, пояснив их физический смысл. Магнитные свойства вещества Определение в начале 19 века движения электрических зарядов в качестве источника магнитного поля и установление ядерно-электронного строения вещества в начале 20 века предопределило современные представления о невозможности индифферентной реакции на внешнее магнитное поле любых веществ в любом агрегатном состоянии - газообразном, жидком или твердом. Таким образом, все вещества в природе являются магнетиками разных типов.

1. Энергия. В теории дифференциальных уравнений доказывается, что уравнения типа (223.2) имеют решения, удовлетворяющие требованиям однозначности, конечности и непрерывности волновой функции y, только при собственных значениях энергии

  (223.3)

т. е. для дискретного набора отрицательных значений энергии.

Таким образом, как и в случае «потенциальной ямы» с бесконечно высокими «стенками» (см. § 220) и гармонического осциллятора (см. § 222), решение уравнения Шредингера для атома водорода приводит к появлению дискретных энергетических уровней. Возможные значения Е1, E2, Е3,... показаны на рис. 302 в виде горизонтальных прямых. Самый нижний уровень Е1, отвечающий минимальной возможной энергии, — основной, все остальные (Еn >Е1, n = 2, 3, ...) — возбужденные (см. § 212). При Е<0 движение электрона является связанным — он находится внутри гиперболической «потенциальной ямы». Из рисунка следует, что по мере роста главного квантового числа n энергетические уровни располагаются теснее и при n=¥ E¥ = 0. При Е>0 движение электрона является свободным; область непрерывного спектра Е>0 (заштрихована на рис. 302) соответствует ионизованному атому. Энергия ионизации атома водорода равна

Выражение (223.3) совпадает с формулой (212.3), полученной Бором для энергии атома водорода. Однако если Бору пришлось вводить дополнительные гипотезы (постулаты), то в квантовой механике дискретные значения энергии, являясь следствием самой теории, вытекают непосредственно из решения уравнения Шредингера.

180. Шарик массой m=60 г колеблется с периодом T=2с. В начальный момент времени смещение шарика х0=4,0 см и он обладает энергией E=0,02 Дж. Записать уравнение простого гармонического колебания шарика и закон изменения возвращающей силы с течением времени.

m=60 г

х0=4 см

Т=2 с

E=0,02 Дж

Уравнение гармонических колебаний , где x – смещение колеблющейся величины, A – амплитуда колебаний, - фаза колебаний,  - циклическая частота, φ0 – начальная фаза.

Скорость равна .

В начальный момент t=0 имеем  и . Тогда начальная энергия равна .

Отношение .

Циклическая частота равна по определению , где T – период. Поэтому .

Начальная фаза равна . Подставляем числа. .

Теперь найдем амплитуду. Умножим  на , возведем все в квадрат и сложим с . Получим следующее: .

Так как sin2φ+cos2φ=1, то .

Откуда амплитуда равна .

Подставляем числа. .

Поэтому уравнение гармонических колебаний .

Ускорение равно . Тогда сила равна

.

[an error occurred while processing this directive]
Собственная проводимость полупроводников