Теоретическая механика

Информатика
Общая архитектура Windows
Сетевая архитектура Windows
Компьютерная сеть
Передача дискретных данных по линиям связи
Общая характеристика протоколов локальных сетей
Построение локальных сетей на базе коммутаторов
Маршрутизация в локальных сетях
Глобальные сети
Глобальные сети с коммутацией пакетов
Структура ЛС
Накопители на магнитной ленте
Компьютерная алгебра
Электротехника
Расчет электрических цепей
Лабораторные работы
Физика
Решение контрольной
Энергетика
Ядерная энергетика
Математика
Линейная алгебра
Компьютерная алгебра
Математический анализ
Линии второй степени
Пределы
Неопределенный интеграл
Определенный интеграл
Основные правила интегрирования
Множества и отображения
Геометрические преобразования
Тройные интегралы примеры решений
Двойные интегралы примеры решений
Теоретическая механика
Решение задач
Техническое черчение
Примеры выполнения заданий

Основные понятия и аксиомы статики

В механике изучают законы взаимодействия и движения материальных тел. Механическим движением называют происходящее с течением времени изменение положения тел или точек в пространстве. Статика основана на аксиомах, вытекающих из опыта и принимаемых без доказательств. Третья аксиома служит основой для преобразования сил. Не нарушая механического состояния абсолютно твердого тела, к нему можно приложить или отбросить от него уравновешенную систему сил. Пятая аксиома устанавливает, что в природе не может быть одностороннего действия силы. При взаимодействии тел всякому действию соответствует равное и противоположно направленное противодействие.

Плоская система сходящихся сил Геометрический метод сложения сил, приложенных в одной точке Силы называют сходящимися, если их линии действия пересекаются в одной точке. Различают плоскую систему сходящихся сил, когда линии действия всех данных сил лежат в одной плоскости, и пространственную систему сходящихся сил, когда линии действия сил лежат в разных плоскостях. Механика (в широком смысле) - это наука о движении материальных тел в пространстве и времени. Она объединяет ряд дисциплин, объектами исследования которых являются твердые, жидкие и газообразные тела. Теоретическая механика, Теория упругости, Сопротивление материалов, Гидромеханика, Газовая динамика и Аэродинамика - вот далеко не полный перечень различных разделов механики. Как видно из их названий, они отличаются друг от друга прежде всего объектами исследования.

Проекция силы на ось Решение задач на равновесие сходящихся сил с помощью построения замкнутых силовых многоугольников в большинстве случаев сопряжено с громоздкими построениями. Более общим и универсальным методом решения таких задач является переход к определению проекций заданных сил на координатные оси и оперирование с этими проекциями. Проекция векторной суммы на ось

Уравнения равновесия плоской системы сходящихся сил Сходящаяся система сил находится в равновесии в случае замкнутости силового многоугольника. Равнодействующая при этом равна нулю (). Проекции равнодействующей системы сходящихся сил на координатные оси равны суммам проекций составляющих сил на те же оси Непосредственное применение условий равновесия в геометрической форме дает наиболее простое решение для системы трех сходящихся сил. При наличии в системе четырех и более сил рациональнее применять аналитический метод, который является универсальным и применяется чаще, всего.

Пара сил и ее действие на тело Две равные и параллельные силы, направленные в противоположные стороны и не лежащие на одной прямой, называются парой сил. Примером такой системы сил могут служить усилия, передаваемые руками шофера на рулевое колесо автомобиля. Пара сил имеет большое значение в практике. Упражнение

Эквивалентность пар

Момент сил. Действие с силами и моментами План лекции Проекция силы на ось и плоскость.

Способ сравнения деформаций

Момент сил относительно точки и оси Момент силы относительно точки определяется произведением модуля силы на длину перпендикуляра, опущенного из точки на линию действия силы Будет ли тело находиться в равновесии, если на него действуют три пары сил, приложенных в одной плоскости, и моменты этих пар имеют следующие значения: М1 = —600 Нм; М2 = 320 Нм и М3 = 280 Нм

Центр параллельных сил и его координаты Установим одно важное свойство точки приложения равнодействующей двух параллельных сил Применим теорему о моменте равнодействующей (теорему Вариньона) относительно начала координат (точки О) Центр тяжести шара совпадает с его геометрическим центром Сумма статических моментов всех частей фигуры называется статическим моментом площади фигуры относительно данной оси Вычислите значение равнодействующей  и абсциссу хC центра параллельных сил

Элементы кинематики

В кинематике изучается механическое движение материальных точек и твердых тел без учета причин, вызывающих эти движения. Кинематику часто называют геометрией движения. Механическое движение происходит в пространстве и во времени. Пространство, в котором происходит движение тел, рассматривается как трехмерное, все свойства его подчиняются системе аксиом и теорем эвклидовой геометрии. Время полагают ни с чем не связанным и протекающим равномерно.

Уравнение движения точки В общем случае точка может двигаться по криволинейной траектории. Для изучения криволинейного движения точки необходимо уметь определить ее положение в назначенной системе отсчета (системе координат) в любой момент времени

Скорость точки Рассмотрим некоторые основные определения, важные для последующего изложения. Если точка за равные промежутки времени проходит равные отрезки пути, то ее движение называется равномерным.

Ускорение точки При движении по криволинейной траектории скорость точки может изменяться и по направлению, и по величине. Изменение скорости в единицу времени определяется ускорением.

Виды движения точки в зависимости от ускорения Рассмотрим возможные случаи движения точки и проанализируем выведенные выше формулы для касательного и нормального ускорений.

Изменение угловой скорости в единицу времени определяется угловым ускорением, равным производной угловой скорости по времени

Скорости и ускорения точек вращающегося тела Если тело вращается вокруг оси, то его точки перемещаются по окружностям, радиусы которых r равны расстояниям точек от оси вращения Пример. Твердое тело, вращающееся вокруг неподвижной оси, имеет в данный момент угловую скорость ω = 5 рад/с и угловое ускорение ε = - 20 рад/с2.

Кинематические пары и цепи Кинематической парой называется подвижное соединение двух соприкасающихся тел, например поршень и цилиндр, вал и подшипник и др. Тела, составляющие кинематическую пару, называются звеньями. Звено механизма может состоять из нескольких деталей (отдельно изготовляемых частей механизма), не имеющих между собой относительного движения. Высшие кинематические пары

Предел применимости формулы Эйлера. Эмпирические формулы для критических напряжений

Основы динамики

В динамике рассматривается движение материальных точек или тел под действием приложенных сил; устанавливается связь между приложенными силами и вызываемым ими движением. Динамика основывается на ряде вытекающих из опыта аксиом; некоторые из них были рассмотрены в статике.

Масса пропорциональна силе тяжести тела и представляет собой постояную скалярную величину, которая всегда положительна и не зависит от характера движения.

Работа постоянной силы на прямолинейном перемещении Определим работу для случая, когда действующая сила постоянна по величине и направлению, а точка ее приложения перемещается по прямолинейной траектории.

Мощность Мощностью называется работа, совершаемая силой в единицу времени

Работа и мощность при вращательном движении Часто встречаются детали машин, вращающиеся вокруг неподвижных осей. Причиной вращательного движения является приложенный к телу вращающий момент относительно оси, который создается парой сил или силой F

Понятие о трении Трение в машинах играет существенную роль. В передаточных механизмах — фрикционных, канатных, ременных и др. — передача движения от ведущего звена к ведомому осуществляется трением. В других случаях трение препятствует движению, поглощая значительную часть работы движущих сил.

Сила трения качения Сопротивление трения качения возникает при перекатывании криволинейных поверхностей контактирующихся тел.

Потенциальная и кинетическая энергия Существуют две основные формы механической энергии: потенциальная энергия, или энергия положения, и кинетическая энергия, или энергия движения. Чаще всего приходится иметь дело с потенциальной энергией сил тяжести. Потенциальной энергией силы тяжести материальной точки или тела в механике называется способность этого тела или точки совершать работу при опускании с некоторой высоты до уровня моря (до какого-то уровня). Потенциальная энергия численно равна работе силы тяжести, произведенной при перемещении с нулевого уровня до заданного положения.

Основное уравнение динамики для вращательного движения твердого тела

Основные понятия сопративления материалов

Понятие о деформации и упругом теле Все элементы сооружений или машин должны работать без угрозы поломки или опасного изменения сечений и формы под действием внешних сил. Размеры этих элементов в большинстве случаев определяет расчет на прочность. Элементы конструкции должны быть не только прочными, но и достаточно жесткими и устойчивыми.

Основные допущения о характере деформаций Перемещения точек упругого тела прямо пропорциональны действующим нагрузкам. Это справедливо в известных пределах нагружения. Элементы и конструкции, подчиняющиеся этому допущению, называют линейно деформируемыми.

Метод сечений. Виды деформаций Стержнями (брусьями) называются такие элементы конструкций, длина которых значительно превышает их поперечные размеры. Кроме стержней (брусьев) могут встречаться пластины или оболочки, у которых только один размер (толщина) мал по сравнению с двумя другими, и массивные тела, у которых все три размера примерно одинаковы. Для определения внутренних силовых факторов необходимо руководствоваться следующей последовательностью действий Пример. Брус, имеющий форму буквы Г, с защемленным нижним сечением нагружен на свободном конце вертикальной силой F. Определить деформированное состояние горизонтального и вертикального участков бруса.

Растяжение и сжатие Продольные силы при растяжении и сжатии. Построение эпюр продольных сил

Напряжения в поперечных сечениях растянутого (сжатого) стержня При растяжении или сжатии осевыми силами стержней из однородного материала поперечные сечения, достаточно удаленные от точек приложения внешних сил, остаются плоскими и пере­мещаются поступательно в направлении деформации. Это положение называют гипотезой плоских сечений Пример. Для заданного ступенчатого бруса, изготовленного из стали марки СтЗ (рис. 69, а) построить эпюры продольных сил и нормальных напряжений по длине; проверить брус на прочность. Допускаемое напряжение для материала бруса согласно табл

Расчеты на срез и смятие Условия прочности Срезом или сдвигом называется деформация, возникающая под действием двух близко расположенных противоположно направленных равных сил. При этом возникают касательные напряжения. Напряжения смятия распределены по поверхности неравномерно. Так как закон их распределения точно неизвестен, расчет ведут упрощенно, считая их постоянными по расчетной площади смятия.

Кручение Чистый сдвиг Экспериментально чистый сдвиг может быть осуществлен при кручении тонкостенной трубы, поэтому деформация чистого сдвига отнесена к теме «кручение».

Когда вращение от двигателя передается при помощи передаточного вала нескольким рабочим машинам, крутящий момент не остается постоянным по длине вала. Характер изменения крутящего момента по длине вала наиболее наглядно может быть представлен эпюрой крутящих моментов. Расчеты на прочность и жесткость при кручении Пример. По данным примера 16 определить диаметр вала, удовлетворяющий условиям прочности и жесткости на наиболее напряженном участке. Материал вала — сталь 40. Допускаемое напряжение на кручение [τк] = 30 МПа, допускаемый угол закручивания [θ°] = 1.10-2 рад/м = 10.10-5 рад/мм; модуль сдвига G = 8.104 Н/мм2. Справедлив ли закон Гука при кручении, если напряжение не превышает предела пропорциональности?

Изгиб Элементы конструкций, работающих на изгиб, называют балками. Чаще всего встречается поперечный изгиб, когда внешние силы, перпендикулярные к продольной оси балки, действуют в плоскости, проходящей через ось балки и одну из главных центральных осей ее поперечного сечения, в частности, в плоскости, совпадающей с плоскостью симметрии балки, например, сила F Нормальные напряжения при изгибе

Расчеты на прочность при изгибе Проверку прочности и подбор сечений изгибаемых балок обычно производят исходя из следующего условия: наибольшие нормальные напряжения в поперечных сечениях не должны превосходить допускаемых напряжений [а] на растяжение и сжа­тие, установленных нормами или опытом проектирования для материала балки.

Определение наибольшего допускаемого изгибающего момента производится в том случае, когда заданы размеры сечения
балки и допускаемое напряжение

Понятие о сложном деформированном состоянии Сложное деформированное состояние возникает в тех случаях, когда элемент конструкции или машина подвергается одновременно нескольким простейшим деформациям.

Основные понятия усталостного разрушения Элементы конструкций и машин часто работают при периодически меняющихся (по величине и даже по знаку) напряжениях. В подобных условиях находятся, например, оси вагонов, рельсы, рессоры, поршневые штоки, валы и многие другие детали машин.

Циклы напряжений. Определение предела выносливости

Местные напряжения. Коэффициент концентрации напряжений В сечениях деталей, где имеются резкие изменения размеров, надрезы, острые углы, отверстия, возникают высокие местные напряжения (так называемая концентрация напряжений). В этих сечениях, как правило, развиваются трещины усталости, приводящие в итоге к разрушению детали.

Понятие о продольном изгибе Вопрос об устойчивости приходится решать в случае сжатия стержня, размеры поперечного сечения которого малы по сравнению с длиной. При увеличении сжимающих сил прямолинейная форма равновесия стержня может оказаться неустойчивой, и стержень выпучится, ось его искривится.

Понятие о теориях прочности Испытания материалов позволяют определить опасные, или предельные, напряжения при каких-то простейших деформированных состояниях.

Напряжения Метод сечений не позволяет установить закон распределения внутренних сил по сечению. Необходимы дополнительные допущения о характере деформации. Эти допущения вводят при изучении различных видов деформации бруса. Можно ли с помощью метода сечения определить закон распределения внутренних сил по сечению?

Механические испытания материалов Физико-механические свойства материалов изучают в лабораторных условиях путем нагружения образца до разрушения. Применяемые в настоящее время механические испытания материалов весьма многообразны. По характеру приложения внешних сил они разделяются на статические, динамические (или испытания ударной нагрузкой) и испытания на выносливость (нагрузкой, вызывающей напряжения, переменные во времени). Предел пропорциональности и предел упругости у для многих материалов, например для стали, оказываются настолько близки, что зачастую их считают совпадающими и отождествляют несмотря на физическое различие этих пределов.

За характеристику прочности хрупких материалов принимают наибольшее значение напряжения, соответствующее моменту разрыва. Это напряжение для хрупких материалов называют пределом прочности и обозначают σпч в отличие от временного сопротивления σв для пластичных материалов.

Классификация машин

Машиной называется устройство, создаваемое человеком, выполняющее механические движения для преобразования энергии, материалов и информации с целью полной замены или облегчения физического и умственного труда человека, увеличения его производительности. Под материалами понимаются обрабатываемые предметы, перемещаемые грузы и т. д.

Основные требования к машинам и деталям. Потребности производства, имеющего основной целью всемерное неуклонное повышение благосостояния трудящихся, определяют основные тенденции в развитии советского машиностроения: увеличение производительности и мощности машин, скоростей, давлений и других показателей интенсивности технологических процессов, повышение к. п. д. машин, уменьшение их массы и габаритов, широкую автоматизацию управления машинами, повышение их надежности и долговечности, снижение стоимости изготовления, повышение экономической эффективности эксплуатации, удобства и безопасности обслуживания.

Краткие сведенья о стандартизации и взаимозаменяймости деталей машин Стандартизацией называется установление обязательных норм, которым должны соответствовать типы, сорта (марки), параметры (в частности, размеры), качественные характеристики, методы испытаний, правила маркировки, упаковки, хранения продукции (сырья, полуфабрикатов, изделии).

Кривошипно-шатунный механизм служит для преобразования вращательного движения кривошипа в возвратно-поступательное прямолинейное движение ползуна, Наоборот, когда ведущим звеном является ползун, возвратно-поступательное прямолинейное движение ползуна преобразовывается во вращательное движение кривошипа и связанного с ним вала.

Кулачковые механизмы применяют в тех случаях, когда перемещение, скорость и ускорение ведомого звена должны изменяться по заранее заданному закону, в частности, когда ведомоэ звено должно периодически останавливаться при непрерывном движении ведущего звена.

Храповые механизмы Прерывистое движение в одну сторону чаще всего осуществляется при помощи храповых и мальтийских механизмов.

Фрикционные передачи Назначение и особенности фрикционных передач Кинематические соотношения во фрикционных передачах

Виды зубчатых передач. Передаточное отношение Наиболее распространенные передачи в современном машиностроении — зубчатые передачи. Основные их достоинства — высокий к.п.д., компактность, надежность работы, простота эксплуатации, постоянство передаточного отношения, большой диапазон передаваемых мощностей (от тысячных долей до десятков тысяч киловатт). Рассмотрим кинематику зубчатой передачи

Червячные передачи Общие сведения. Передаточное отношение и к. п. д Для передачи движения между валами, оси которых перекрещиваются, применяются червячные передачи. Угол перекрещивающихся осей обычно равен 90°. Основные достоинства червячной передачи, обусловившие ее широкое распространение в различных отраслях машиностроения.

Ременные передачи Устройство ременных передач. Виды приводных ремней Передачу вращательного движения с одного вала на другой при значительных расстояниях между ними можно осуществить гибкой связью, используя силу трения между поверхностью шкива и гибким телом. Гибкой связью служат ремни. К достоинствам плоскоременной передачи относятся: простота и низкая стоимость конструкции; плавность хода, способность смягчать удары (благодаря эластичности ремня) и предохранять приводимые в движение механизмы от поломок при внезапных перегрузках (за счет пробуксовывания ремня); возможность передачи мощности при значительных расстояниях между осями ведущего и ведомого валов; бесшумность работы (по сравнению с зубчатой передачей); простота ухода и обслуживания.

Цепные передачи Особенности и область применения цепных передач Цепная передача относится к числу передач с промежуточным звеном (гибкой связью).

Краткие сведения о редукторах Обширный класс машин составляют производственные машины, которые преобразуют механическую работу, получаемую от двигателя, в работу, связанную с выполнением определенных технологических процессов. К ним, в частности, относятся машины по обработке металлов, древесины, почвы и др.

Конструктивные формы осей и валов Детали, на которые насажены вращающиеся части (шкивы, зубчатые колеса и т. п.), называются осями или валами. Оси и валы различаются между собой по условиям работы. Оси, несущие на себе вращающиеся части, не передают моментов и подвергаются только изгибу; валы, являясь, как и оси, поддерживающими деталями, помимо того, передают момент и работают не только на изгиб, но и на кручение.

Шпоночные и зубчатые (шлицевые) соединения Шпонкой называют стальной стержень, вводимый между валом и посаженной на него деталью — зубчатым колесом, шкивом, муфтой — для взаимного соединения и передачи вращающего момента от вала к детали или от детали к валу. Призматические шпонки не имеют уклона

Подшипники скольжения Для поддержания осей и валов с насаженными на них деталями и восприятия действующих на них усилий служат специальные опоры: подшипники, нагружаемые радиальными силами, и подпятники, нагружаемые осевыми силами. По характеру трения рабочих элементов опоры разделяют на опоры скольжения и опоры качения (шариковые и роликовые подшипники).

Подшипники качения — стандартные изделия, которые изготовляются в массовом количестве на специализированных заводах

Назначение и классификация муфт Муфтами называюи устройства, служащие для соединения валов между собой или с деталями, свободно насаженными на валы (зубчатые колеса, шкивы), с целью передачи вращающего момента. Муфты делятся на сцепные и постоянные. Сцепные муфты бывают фрикционные и кулачковые Жесткие и упругие компенсирующие муфты применяют для компенсации погрешностей в относительном положении и соединяемых валов; смещения центров; взаимного наклона осей; осевого смещения. Возможность компенсировать тот или иной вид отклонений зависит от конструкции муфты. Сцепные и предохранительные муфты Сцепные муфты предназначены для соединения и разъединения валов во время вращения (на ходу) или во время остановки (в покое)

Соединение деталей

Заклепочные соединения Соединения деталей машин бывают неразъемными и разъемными. Разъемные соединения (болтовые, шлицевые и др.) могут быть разобраны и вновь собраны без разрушения деталей. Неразъемные соединения (заклепочные, сварные и др.) могут быть разобраны лишь путем разрушения элементов соединения.

Сварные соединения В современном машиностроении и строительстве широкое применение получили неразъемные соединения, осуществляемые при помощи сварки. Изобретателями электросварки являются русские инженеры Н.Н. Бенардос (1882 г.) и Н.Г. Славянов (1888 г.). Научно обосновали методы электросварки академики В.П. Никитин и Е.О. Патон и проф. В.П. Вологдин. Автоматическая сварка создана академиком Е.О. Патоном (1870—1953 гг.). Работы Е.О. Патона с огромным успехом продолжает его сын академик Б. Е. Патон.

Соединение пайкой В некоторых случаях для создания неразъемного соединения применяют пайку (например, для соединения тонкостенных деталей, элементов электрических схем и др.).

Резьбовые соединения Общие сведения о резьбах. Широко применяемые резьбовые соединения осуществляются с помощью болтов, винтов, шпилек, стяжек, резьбовых муфт и т. п. Основным элементом резьбового соединения является винтовая пара. Конструкции резьбовых соединений Резьбовые соединения осуществляются с помощью резьбовых крепежных изделий, которые чрезвычайно разнообразны по своей форме и назначению. К ним относятся болты, винты, шпильки, гайки, детали трубопроводов.

 

 

Сетевая архитектура Windows