Резонанс в электрических цепях Топологические методы расчета


Магнитносвязанные электрические цепи

Исследование режимов электрических цепей методом круговых диаграмм.

Уравнение дуги окружности в комплексной форме.

При изменении параметров одного из элементов сложной цепи токи всех ветвей, напряжения на всех элементах изменяются так, что концы векторов этих величин описывают дуги некоторых окружностей. Для исследования зависимости любой векторной величины (U, I) от переменного параметра достаточно определить дугу окружности, по которой перемещается конец этого вектора, другими словами, построить круговую диаграмму.

Уравнение дуги окружности в комплексной форме имеют вид:

 ,

где М = Мejb – исследуемый вектор, M0 - вектор-хорда дуги окружности, a = const – постоянный коэффициент, y = const – постоянный угол, n = var = (0 - ¥) – переменный параметр.

Порядок построения круговой диаграммы по заданному уравнению:

 

 На комплексной плоскости в выбранном масштабе mм откладывают вектор М0=5ej20 - хорду дуги окружности (рис. 80).

 

 

Рис. 80

Вдоль вектора-хорды М0 от его начала в выбранном масштабе mа откладывают отрезок, равный коэффициенту “а”.

Из конца отрезка “а” под углом -y к вектору М0 проводят линию переменного параметра (л.п.п.), на которой наносят масштаб mа, принятый ранее для отрезка “а”.

Определят положение центра дуги как точку пересечения двух перпендикуляров: первый проводят через середину вектора-хорды М0, а второй – из начала координат к линии переменного параметра.

Проводят рабочую дугу по ту сторону от вектора-хорды М0, где расположена линия переменного параметра.

Вдоль линии переменного параметра откладывают текущее значение параметра “n” соединяют точку с началом вектора М0 (началом координат) и продолжают прямую линию до пересечения с дугой окружности. Искомый вектор М соответствует отрезку от начала координат до точки пересечения прямой линии с дугой окружности, при этом модуль вектора равен длине отрезка в масштабе mм, а начальная фаза вектора – углу между вещественной осью +1 и напрвлением вектора.

На рис. 80 показано семейство векторов М, построенных для различных значений переменного параметра “n” (n= 0; 10; 20; 30).

Анализ полученного выражения (6) показывает:

При начальной фазе напряжения  постоянная интегрирования А=0. Таким образом, в этом случае коммутация не повлечет за собой переходного процесса, и в цепи сразу возникнет установившийся режим.

При  свободная составляющая максимальна по модулю. В этом случае ток переходного процесса достигает своей наибольшей величины.

Если  значительна по величине, то за полпериода свободная составляющая существенно не уменьшается. В этом случае максимальная величина тока переходного процесса  может существенно превышать амплитуду     тока     установившегося     режима.   Как видно   из  рис. 4,     где

, максимум тока имеет место примерно через . В пределе при   .

Таким образом, для линейной цепи максимальное значение тока переходного режима не может превышать удвоенной амплитуды принужденного тока: .

Аналогично для линейной цепи с конденсатором: если в момент коммутации принужденное напряжение равно своему амплитудному значению и постоянная времени  цепи достаточно велика, то примерно через половину периода напряжение на конденсаторе достигает своего максимального значения , которое не может превышать удвоенной амплитуды принужденного напряжения: .

Преобразуем уравнение закона Ома для схемы к виду дуги окружности в комплексной форме:

,

где  М0 = Iк= E/Z1 – ток короткого замыкания, соответствует вектору-хорде дуги окружности, Z2 = n = var – переменный параметр, Z1= a = const -  постоянный коэффициент, j2 -j1= y = const – постоянный угол.

Круговая диаграмма для произвольного тока и напряжения в сложной цепи

 Пусть в схеме сложной цепи изменяется параметр сопротивления в к-той ветви Zк=Zкejjк так, что фазный угол jк= const, а модуль Zк=0÷¥ = var – переменный параметр.

Выделим к-тую ветвь из сложной схемы, а остальную часть схемы по отношению к ветви заменим эквивалентным генератором напряжения с параметрами Eэ = Uхх, Z0= Z0ejjo = Zвх (рис 82):

 

Таким образом, получившаяся эквивалентная схема рис. 82 ничем не отличается от рассмотренной ранее схемы рис. 81, и, следовательно, для переменных векторов Iк, Uк по аналогии могут быть могут быть записанные уравнения дуги в комплексной форме,

При всех изменениях в электрической цепи: включении, выключении, коротком замыкании, колебаниях величины какого-либо параметра и т.п. – в ней возникают переходные процессы, которые не могут протекать мгновенно, так как невозможно мгновенное изменение энергии, запасенной в электромагнитном поле цепи. Таким образом, переходный процесс обусловлен несоответствием величины запасенной энергии в магнитном поле катушки и электрическом поле конденсатора ее значению для нового состояния цепи. При переходных процессах могут возникать большие перенапряжения, сверхтоки, электромагнитные колебания, которые могут нарушить работу устройства вплоть до выхода его из строя. С другой стороны, переходные процессы находят полезное практическое применение, например, в различного рода электронных генераторах. Все это обусловливает необходимость изучения методов анализа нестационарных режимов работы цепи.


Электрические цепи трехфазного тока