Резонанс в электрических цепях Топологические методы расчета


Магнитносвязанные электрические цепи

Топологические методы расчета электрических цепей

1.Топологические определения схемы

 С появлением ЭВМ и их широким применением для решения сложных математических задач были разработаны специальные топологические расчёта сложных электрических цепей, графов и матриц.

Схема сложной электрической цепи (рис. 83а) может быть заменена (представлена) направленным графом (рис. 83б) с соблюдением следующих условий:

1)узлы графа соответствуют узлам схемы;

2)ветви графа соответствуют ветвям схемы;

3) направление ветвей соответствует направлению токов в ветвях схемы.

 

Любая часть графа называется подграфом. Минимальный связанный подграф, соединяющий все узлы графа и не образующий контуров, называется деревом графа (на схеме графа обозначается жирной линией). Для конкретного графа может быть составлено определенное множество вариантов деревьев, но в расчете схемы принимается любой из вариантов. Ветви графа, не входящие в его дерево, называются связями или хордами.

Структура графа и соответственно структура электрической схемы может быть описана с помощью топологических матриц или матриц соединения. Таких матриц несколько, для расчета электрических цепей используются две основные:  - матрица соединений «узлы-ветви» и - матрица соединений «контуры-ветви». 

  В общем случае сложная схема содержит «m» ветвей и «n» узлов, при этом максимальное число ветвей зависит от числа узлов: .

Корни характеристического уравнения. Постоянная времени

Выражение свободной составляющей  общего решения х дифференциального уравнения (2) определяется видом корней характеристического уравнения (см. табл. 3).

Таблица 3. Выражения свободных составляющих общего решения

Вид корней характеристического уравнения

   Выражение свободной составляющей

Корни  вещественные и различные

                  

Корни  вещественные и

      

Пары комплексно-сопряженных корней

Необходимо помнить, что, поскольку в линейной цепи с течением времени свободная составляющая затухает, вещественные части корней характеристического уравнения не могут быть положительными.

При вещественных корнях  монотонно затухает, и имеет место апериодический переходный процесс. Наличие пары комплексно сопряженных корней обусловливает появление затухающих синусоидальных колебаний (колебательный переходный процесс).

Поскольку физически колебательный процесс связан с периодическим обменом энергией между магнитным полем катушки индуктивности и электрическим полем конденсатора, комплексно-сопряженные корни могут иметь место только для цепей, содержащих оба типа накопителей. Быстроту затухания колебаний принято характеризовать отношением

,

которое называется декрементом колебания, или натуральным логарифмом этого отношения

,

называемым логарифмическим декрементом колебания, где .

Составим таблицу соединений «узлы-ветви» руководствуясь следующими правилами:

1 – ветвь выходит из узла,

-1 – ветвь входит в узел,

0 – отсутствие связи с узлом.

Уравнения Ома и Кирхгофа в матричной форме

Если в исследуемой сложной схеме содержатся параллельно включенные ветви, то для составления матриц соединений такие ветви необходимо заменить (объединить) одной эквивалентной ветвью.

В общем случае любая ветвь схемы кроме комплексного сопротивления (проводимости)  может содержать источник ЭДС Ек, источник тока Jк. Схема и граф обобщенной ветви показаны на рис. 1а, б:

Уравнения Кирхгофа в обычной форме имеют вид:  - первый закон Кирхгофа для узлов, - второй закон Кирхгофа для контуров.

Система уравнений Кирхгофа в матричной форме получается через матрицы соединений  и :

Составленная система уравнений содержит “m” неизвестных токов и “m” неизвестных напряжений, всего 2“m” неизвестных, и непосредственно не может быть решена.

Сделаем подстановку матрицы  из матричных уравнений закона Ома, получим:

Для сравнения приведем те же уравнения в обычной форме:

Сделаем подстановку матрицы  из матричного уравнения закона Ома, получим:

Контурные уравнения в матричной форме

Вводим понятия контурных токов Iк . Контурные токи замыкаются по контурам-ячейкам графа, именуются по имени хорды, их направление совпадает с направлением хорды. Столбовая матрица контурных токов:

Действительные токи связаны с контурными через матрицу :

Заменим в уравнениях 2-го закона Кирхгофа действительные токи [I] на контурные   согласно формуле:

 

  Введем обозначения:

 -матрица контурных сопротивлений

Узловые уравнения в матричной форме

Вводим понятие узловых потенциалов jу. Потенциал последнего n-го узла, для которого отсутствует строка в матрице [A] принимается равным 0. Столбовая матрица узловых потенциалов:

Напряжения ветвей связаны с потенциалами узлов через матрицу .

Подставим в уравнения 1-го закона Кирхгофа , получим:

 Введем обозначения:

  - матрица узловых проводимостей

При всех изменениях в электрической цепи: включении, выключении, коротком замыкании, колебаниях величины какого-либо параметра и т.п. – в ней возникают переходные процессы, которые не могут протекать мгновенно, так как невозможно мгновенное изменение энергии, запасенной в электромагнитном поле цепи. Таким образом, переходный процесс обусловлен несоответствием величины запасенной энергии в магнитном поле катушки и электрическом поле конденсатора ее значению для нового состояния цепи. При переходных процессах могут возникать большие перенапряжения, сверхтоки, электромагнитные колебания, которые могут нарушить работу устройства вплоть до выхода его из строя. С другой стороны, переходные процессы находят полезное практическое применение, например, в различного рода электронных генераторах. Все это обусловливает необходимость изучения методов анализа нестационарных режимов работы цепи.


Электрические цепи трехфазного тока