Резонанс в электрических цепях Топологические методы расчета


Уравнения Ома и Кирхгофа в матричной форме

Электрические цепи трехфазного тока.

1. Трехфазная система

Многофазной системой называется совокупность, состоящая из ”n” отдельных одинаковых электрических цепей или электрических схем, режимные параметры в которых (е, u, i) сдвинуты во времени на равные отрезки  или по фазе .

Отдельные части системы называются фазами. Термин ”фаза” в электротехнике имеет два смысловых значения: первое - как момент времени для синусоидальной функции тока или напряжения, второе - как часть многофазной системы. В технике нашли применение 2-х, 3-х, 6-и и более фазные системы. В электроэнергетике наибольшее распространение получила трехфазная система, обладающая рядом преимуществ перед системами с другим числом фаз.

Трехфазная система состоит из трех электрических цепей или электрических схем (фаз), параметры режима (u,i) в которых сдвинуты во времени на . Отдельные фазы трехфазной системы согласно ГОСТ обозначаются (именуются) заглавными латинскими буквами А, В, С (основное обозначение), или цифрами 1, 2, 3 (допустимое обозначение), или заглавными латинскими буквами R, S, T (международное обозначение). 

 

Не имеет значения, какую из трех фаз именовать какой буквой А, В или С, существенным является их порядок следования друг за другом во времени. Прямым порядком следования фаз называется АВСА, при котором параметры режима (u, i) в фазе В отстают от аналогичных параметров в фазе А на 120o, а в фазе С - опережают на 120o. При обратном порядке следования фаз АС ВА параметры режима в фазе С отстают от аналогичных параметров в фазе А на 120o, а в фазе В - опережают на 120o.

Если отдельные фазы системы работают изолировано и независимо друг от друга, то система называется несвязанной. Рассмотрим работу простейшей несвязанной трехфазной системы (рис. 85). Мгновенные значения фазных ЭДС генератора сдвинуты во времени на 120o в порядке следования фаз A®B®C®A:

;

Графические диаграммы этих функций показаны на рис. 86, а векторные - на рис. 87.

3. Заряд и разряд конденсатора

При переводе ключа в положение 1 (см. рис. 6) начинается процесс заряда конденсатора:

.

Принужденная составляющая напряжения на конденсаторе .

Из характеристического уравнения

определяется корень . Отсюда постоянная времени .

Таким образом,

.

При t=0 напряжение на конденсаторе равно  (в общем случае к моменту коммутации конденсатор может быть заряженным, т.е. ). Тогда  и

.

Соответственно для зарядного тока можно записать

.

В зависимости от величины : 1 - ; 2 - ; 3 - ; 4 -  - возможны четыре вида кривых переходного процесса, которые иллюстрирует рис. 7.

Основное свойство любых переменных функций (е, u, i) в симметричной трехфазной системе состоит в том, что сумма их мгновенных значений в любой момент времени равна нулю, например, еА + еВ + еС = 0. Найдем эту сумму для разных моментов времени:

;

;

.

Как следует из векторной диаграммы рис. 87, геометрическая сумма векторов фазных ЭДС также равна нулю:

.

Если нагрузка отдельных фаз равна между собой, т.е. , то фазные токи будут равны по модулю и сдвинуты по фазе относительно своих ЭДС (напряжений ) на один и тот же угол φ, а между собой, как и ЭДС, будут сдвинуты по фазе на 120о. Следовательно, фазные токи iА, iВ, iС образуют симметричную трехфазную систему и для них будут справедливы полученные ранее выводы: iА + iВ + iС = 0; IА + IВ + IС = 0.

Достоинства трехфазной системы:

Передача энергии от генератора к потребителям трехфазным током  наиболее выгодна экономически, чем при любом другом числе фаз. Например, по сравнению с двухпроводной системой достигается экономия проводов в два раза (3 провода вместо 6), соответственно уменьшаются потери энергии в проводах линии.

Трехфазная система позволяет технически просто получить круговое вращающееся поле, которое лежит в основе работы всех трехфазных машин (генераторов и двигателей).

Элементы трехфазной системы (генераторы, трансформаторы, двигатели) просты по конструкции, надежны в работе, имеют хорошие массогабаритные показатели, сравнительно дешевы, долговечны.

В трехфазном генераторе различают фазные и линейные напряжения. Фазными называются напряжения между началами и концами фазных обмоток или между одним из линейных выводов А, В, С и нулевым выводом N. Фазные напряжения равны фазным ЭДС: UА=ЕА, UВ=ЕВ, UС=ЕС (индекс N при фазных напряжениях опускается, так как φN = 0). Линейными называются напряжения между двумя линейными выводами А, В, С. Линейные напряжения равны векторной разности двух фазных напряжений: UАВ =UА -UВ;  UВС =UВ -UС; UСА =UС -UА .

  При расчете трехфазных цепей комплексным методом фазные и линейные напряжения генератора представляются в комплексной форме, при этом один из векторов системы принимают за начальный и совмещают его с вещественной осью, а остальные вектора получают начальные фазы согласно их углам сдвига по отношению к начальному вектору. На рис. 89а показан вариант представления напряжений трехфазного генератора в комплексной форме, когда за начальный вектор принимается фазное напряжение фазы А. В этом случае фазные напряжения генератора в комплексной форме получат вид : , , линейные напряжения: .

Трехфазные цепи являются разновидностью цепей синусоидального тока, и, следовательно, все рассмотренные ранее методы расчета и анализа в символической форме в полной мере распространяются на них. Анализ трехфазных систем удобно осуществлять с использованием векторных диаграмм, позволяющих достаточно просто определять фазовые сдвиги между переменными. Однако определенная специфика многофазных цепей вносит характерные особенности в их расчет, что, в первую очередь, касается анализа их работы в симметричных режимах.


Электрические цепи трехфазного тока