Задания на курсовую работу Методика расчёта


Расчёт сложных цепей переменного тока символическим методом

 

Метод узловых и контурных уравнений

Составляем из заданных электроприёмников цепь с двумя узлами, как это показано на рисунке 3.3. Комплексная схема замещения такой цепи показана на рисунке 3.4.

 Сущность метода состоит в составлении системы уравнений по первому и второму законам Кирхгофа. Расчёт производим в следующем порядке.

По первому закону составляем (n – 1) независимых уравнений, где n – количество узлов в схеме. Выбираем узел А.. По второму закону нам остаётся составить два уравнения, так как число уравнений в системе должно быть равно количеству неизвестных токов, а их три. Направления токов в ветвях выбираются произвольно. Направления обхода контуров принимаем (услов- но) по часовой стрелке. Таким образом, система уравнений в комплексной

форме включает в себя одно уравнение, составленное по первому закону Кирхгофа и два уравнения, составленные по второму закону:

 I1 + I2 – I3 = 0;

 I1Z1 – I2Z2 = E1 – E2;

 I2Z2 + I3Z3 = E2.

 Рис. 3.3 Рис. 3.4

Подставляем заданные комплексы известных величин:

I1 + I2 – I3 = 0 (1);

I1 * (2 – j3) – I2 * (14 – j12) = 100 – 65 (2);

 I2 * (14 – j12) + I3 * j18 = 65 (3).

Данную систему легче решить с помощью простых подстановок: из (2) определяем I1, из (3) определяем I3:

I1 + I2 – I3 = 0;

I1 = (35+I2*(14-j12))/(2-j3) = 5,38 + j8,08+I2*(4,92+j1,38) (4); 

I3 = (65-I2*(14-j12))/j18 = –j3.61 – I2*(–0,667 – j0,778) (5).

Подставляем (4) и (5) в (1) и получим:

5,38 + j8,08 + I2*(4,92 + j1,38) + I2 + j3,61 + I2* (0,667 – j0,778) = 0;

5,38 + j8,08 + j3,61 = I2 * (–4,92 – j1,38 – 1 + 0,667 + j0,0778);

5,38 +j11,68 = I2 * (–5,253 – j0,602), отсюда

I2 =(5.38+j11.68)/(-5.253-j0.602) = –1,26 – j2,08 = 2,438e-j121,21 A;

I1 = 5,38 + j8,08 + (–1,26 – j2,08) * (4,92 + j1,38) = 2,05 – j3,89 = =4,4 *  A.

 I3 = –3,61 – (–1,26 – j2,08)*(–0,667 – j0,778) = 0,778 – j5,97 =

=6.02 *  A.

Составляем уравнение баланса мощностей в заданной электрической цепи. Определяем комплексные мощности источников:

SE1 = E1*= 100 * (2,05 + j3,89) = 205 + j389 = 440 * *В*A.;

SE2 = E2*= 65 * (–1,26 + j2,08) = –81,9 + j135 = 158 *B*A.

Определяем комплексные мощности приёмников электрической энергии:

 S1 = I12 * Z1 = 4,42 * (2 – j3) = 38,7 – j58,1 B*A;

 S2 = I22 * Z2 = 2,432 * (14 – j12) = 82,7 – j70,8 B*A;

  S3 = I32 * Z3 = 6,022 * (j18) = j652 B*A.

Уравнение баланса комплексных мощностей!

SЕ1 + SE2 = S1 + S2 + S3;

205 + j389 – 81,9 + j135 = 38,7 – j58,1 + 82,7 – j70,8 + j652;

 123,1 + j524 = 121,4 + j523, или

  538,3 *  = 536,9 * .

 Относительная погрешность в балансе полных мощностей составит:

YS = (538.3-536.9) * 100%/538.3 = 0,28% < 2%.

Угловая погрешность также незначительна.

Рисунок 3.5

 Для построения векторной диаграммы задаёмся масштабами токов MI = 1 А/см и э.д.с. ME = 10 В/см.

Векторная диаграмма в комплексной плоскости построена на рисунке 3.5.

Мощность в трехфазных цепях

Мгновенная мощность трехфазного источника энергии равна сумме мгновенных мощностей его фаз:

.

Активная мощность генератора, определяемая как среднее за период значение мгновенной мощности, равна

.

Соответственно активная мощность трехфазного приемника с учетом потерь в сопротивлении нейтрального провода

,

реактивная

и полная

.

Метод контурных токов

 Намечаем в независимых контурах заданной цепи, как показано на рисунке 3.4, контурные токи IK1 и IK2 – некоторые расчётные комплексные величины, которые одинаковы для всех ветвей выбранных контуров. Направления контурных токов принимаются произвольно. Для определения контурных токов составляем два уравнения по второму закону Кирхгофа:

 IK1 * (Z1 + Z2) – IK2Z2 = E1 – E2;

 -IK1 * Z2 + IK2 * (Z2 + Z3) = E2.

 Подставляем данные в систему:

IK1 * (2 – j3 + 14 – j12) – IK2 * (14 – j12) = 100 – 65;

 -IK1 * (14 – j12) + IK2 * (14 – j12 + j18) = 65.

IK1 * (16 – j15) – IK2 * (14 – j12) = 35;

  -IK1 * (14 – j12) + IK2 * (14 + j6) = 65.

 Решаем систему с помощью определителей. Определитель системы:

Метод упрощения схем

 Для того чтобы показать, как рассчитывать цепь методом упрощения схем, предположим, что в источнике с э.д.с. E1 произошло короткое замыкание между зажимами, то есть E1 = 0. Электрическая схема цепи и комплексная схема замещения представлены на рисунках 3.6 и 3.7.

  Определяем эквивалентные сопротивления участков и всей цепи. Сопротивления Z1 и Z3 соединены параллельно, поэтому их эквивалентное сопротивление

Z1 3 =  =  = 2,83 – j3,22 Ом

Расчёт трёхфазной цепи при соединении приемника в звезду

При расчёте несимметричной трехфазной цепи с потребителем, соединённым в звезду, схема может быть без нулевого провода или с нулевым проводом, который имеет комплексное сопротивление ZN. В обоих случаях система линейных и фазных напряжений генератора симметричны. Система линейных напряжений нагрузки останется также симметричной, так как линейные провода не обладают сопротивлением. Но система фазных напряжений нагрузки несимметрична из-за наличия напряжения смещения нейтрали UN. Трехфазная цепь при соединении приёмника в звезду представляет собой цепь с двумя узлами, расчёт подобных цепей наиболее целесообразно вести методом узлового напряжения.

Расчёт трёхфазной цепи при соединении приёмника в звезду без нулевого провода.

Если задана трехфазная цепь без нулевого провода, то формула для определения напряжения смещения нейтрали не должна включать проводимость нулевого провода:

  UN =

 Далее фазные напряжения и токи нагрузки определяются аналогично предыдущему примеру, затем делается проверка:

 IA + IB + IC = 0

5. Расчёт трёхфазной цепи при соединении приёмника  в треугольник

Расчёт неразветвлённой цепи с несинусоидальными напряжениями и токами

 Составляем схему заданной цепи, подключая последовательно соединённые приёмники к источнику напряжения

u = 220 Sin (ωt + 150) + 80 Sin (3ωt – 250) + 30 Sin 5ωt = u1 + u3 + u5,

который на схеме замещения представляем как последовательно соединённые три источника переменного напряжения u1, u2 и u3 с разными частотами (рисунок 6.1) Величины сопротивлений заданы для частоты первой гармоники: R1 = 2 Ом, XC11 = 3 Ом, R2 = 14 Ом, XC21 = 12 Ом, XL31 = 18 Ом. Поскольку напряжения источников имеют разные частоты, то и реактивные сопротивления для них будут иметь разные величины. Активные сопротивления считаем от частоты не зависящими. Поэтому расчёт ведём методом наложения, то есть отдельно для каждой гармоники.

Если к симметричной цепи приложена симметричная система фазных напряжений прямой (обратной или нулевой) последовательностей, то в ней возникает симметричная система токов прямой (обратной или нулевой) последовательности. При использовании метода симметричных составляющих на практике симметричные составляющие напряжений связаны с симметричными составляющими токов той же последовательности. Отношение симметричных составляющих фазных напряжений прямой (обратной или нулевой) последовательности к соответствующим симметричным составляющим токов называется комплексным сопротивлением прямой
Расчёт сложных цепей переменного тока