Линейные электрические цепи Векторные диаграммы


Расчёт трёхфазной цепи при соединении приемника в звезду

Разряд конденсатора на активное сопротивление

Если конденсатор , предварительно заряженный до напряжения  замкнуть в момент  на сопротивление  (рис.1.3), то будет происходить его разряд. В данном случае внешнего воздействия нет и следует рассматривать лишь свободный процесс в цепи, т.е. уравнение (l.4) будет

,

решением которого является выражение

.

Для определения константы интегрирования  воспользуемся начальным условием задачи: при  .Поэтому  и тогда решение принимает вид

.

Ток разряда

 (1.10)

Сравнивая выражения (1.8) н (1.10),видим, что, как и следовало ожидать, направление тока разряда противоположно направлению тока заряда емкости для этой же цепи. Графики изменения напряжения и тока приведены на рнс.1.4. В процессе разряда емкости вся энергия, запасенная в ней, расходуется в активном сопротивлении в виде тепловых потерь.

3. Трехпроводная система, симметричный режим.

При отсутствии доступа к нейтральной точке последняя создается искусственно с помощью включения трех дополнительных резисторов по схеме «звезда», как показано на рис. 9 – схема ваттметра с искусственной нейтральной точкой. При этом необходимо выполнение условия , где  - собственное сопротивление обмотки ваттметра. Тогда суммарная активная мощность трехфазной системы определяется согласно (4).

Включение цепи R, L на постоянное напряжение

Рассматриваемая цепь приведена на рис.1.5.Так как энергия магнитного поля катушки индуктивности равна

,

и она не может изменяться скачком при мгновенном изменении внешнего воздействия, то отсюда заключаем, что в цепи R, L ток скачком изменяться не может. Требуется конечное время переходного процесса, пока ток в цепи не достигнет стационарного значения. Рассмотрим этот процесс. Уравнение Кирхгофа для такой цепи

Разряд конденсатора в цепи .

 

 

Пусть предварительно заряженный до напряжения  конденсатор емкостью  в исходный момент времени замыкается на последовательно соединенные активное сопротивление и катушку индуктивности  (рис.1.7). Рассматриваемая цепь содержит, в отличие от предыдущих примеров, два энергоемких параметра - емкость и индуктивность. Поэтому составленное на основании второго закона Кирхгофа уравнение приводится к дифференциальному уравнению второго порядка.

Действительно, имеем для суммы напряжений на элементах цепи

,  (1.15)

или, так как

,

уравнение приводится к виду

Согласно выражению (l.21) на рис.1.8 построен график тока , а также приведен график напряжения на емкости . В рассматриваемом случае характер процесса в цепи носит название апериодического разряда конденсатора. Граничным случаем апериодического процесса является случай, когда . T.e. . Величина тока для этого случая находится, если раскрыть неопределенность, получающуюся в выражении (1.19). Закон изменения тока во времени здесь таков:

.

Как видно из рис.1.8, при апериодическом разряде емкости ток в цепи вначале равен нулю, что объясняется противодействием э.д.с, самоиндукции катушки. Затем по мере убывания этой э.д.с. ток по абсолютной величине растет. Однако в процессе разряда емкости напряжение  убывает, и ток с некоторого момента также начинает убывать.

Воздействие постоянного напряжения на L,C,R цепь

Пусть постоянное напряжение  подключается в момент  к последовательному  контуру (рис.1.11).Уравнение Кирхгофа для рассматриваемой цепи имеет вид

 

,  (1.27)

и его общее решение , где  - вынужденный ток, в данном случае равный нулю, так как переходный процесс заканчивается, как только конденсатор зарядится до напряжения , а ток заряда прекратится. Ток - свободный ток, являющийся решением однородного уравнения

,

Воздействие гармонической э.д.с, на колебательный контур

В начальный момент  к последовательному  контуру подключается гармоническая э.д.с. Дифференциальное уравнение для данной цепи, составленное на основании уравнения Кирхгофа, имеет вид:

, (1.35)

а его решение . Здесь  - ток свободных колебаний, а  - вынужденный ток.

Аналогичное уравнение записывается для напряжения на емкости

, (1.36)

решение которого .Здесь  - напряжение на емкости, соответствующее свободным колебаниям в контуре. Выражение для этого напряжения можно записать, пользуясь полученным ранее выражением (l.23) при рассмотрении свободных колебаний в контуре. Запишем выражение для напряжения  в виде

.

Величина амплитуды установившегося колебания зависит от добротности контура. Процесс установления колебаний заключается в постепенном заряде емкости и накоплении энергии в ней. Так как частота э.д.с.  и собственная частота контура   равны, то при смене знака э.д.с. ток в контуре также меняет направление, что приводит к увеличению заряда на емкости. Напряжение на емкости растет до того момента времени, пока энергия потерь в активном сопротивлении , возрастая с ростом тока в контуре, не сравняется с энергией, поступающей в контур за счет источника э.д.с.

Процесс установления колебаний практически считается законченным, когда амплитуда напряжения на емкости (или ток в контуре) достигает 95% своего стационарного значения, т.е. можно записать

,

или время установления

При пропускании по обмотке катушки синусоидального тока она создает магнитное поле, вектор индукции которого изменяется (пульсирует) вдоль этой катушки также по синусоидальному закону Мгновенная ориентация вектора магнитной индукции в пространстве зависит от намотки катушки и мгновенного направления тока в ней и определяется по правилу правого буравчика. Так для случая, показанного на рис. 1, вектор магнитной индукции направлен по оси катушки вверх. Через полпериода, когда при том же модуле ток изменит свой знак на противоположный, вектор магнитной индукции при той же абсолютной величине поменяет свою ориентацию в пространстве на 180. С учетом вышесказанного магнитное поле катушки с синусоидальным током называют пульсирующим.
Энергетический баланс в электрической цепи