Линейные электрические цепи Векторные диаграммы


Векторные диаграммы переменных токов и напряжений

Переменные ток в однородных идеальных элементах

Существует три типа идеальных схемных элементов: резистор R, катушка L и конденсатор C. Рассмотрим процессы в цепи с каждым из названных элементов в отдельности.

а) Цепь с идеальным резистором R. Расчет нелинейных цепей по мгновенным значениям

Векторная диаграмма

Пусть к цепи с резистором R (рис. 41а) приложено переменное напряжение:

.

Ток и напряжение на зажимах резистора связаны между собой физическим законом Ома, т. е.

,

где ,  - уравнения закона Ома для амплитудных и действующих значений функций.

Угол сдвига фаз между напряжением и током , следовательно, в цепи с резистором R ток и напряжение совпадают по фазе.

Комплексное сопротивление резистора является чисто вещественным:

.

Мгновенная мощность в цепи с резистором R всегда положительна:

Это означает, что в цепи с резистором R протекает только процесс преобразования электрической энергии в другие виды (активный процесс). По этой причине сопротивление резистора R на переменном токе называется активным.

Графические диаграммы функций времени u(t), i(t), p(t) представлены на рис. 42, а векторная диаграмма напряжения и тока - на рис. 41б.

Особенности протекания несинусоидальных токов
через пассивные элементы цепи

1. Резистор.

При  ток через резистор (см. рис. 3)

,

где .

Таким образом, на резистивном элементе несинусоидальные напряжение и ток совпадают по форме и подобны друг другу. Это позволяет на практике осциллографировать форму тока с помощью регистрации напряжения на шунте.

Ток и напряжение на зажимах катушки связаны между собой физическим законом электромагнитной индукции , откуда следует:

,

  где  - индуктивное реактивное сопротивление катушки,

Уравнения закона Ома для амплитудных и действующих значений функций:

Угол сдвига фаз , т.е. в цепи с катушкой L ток отстает от напряжения (напряжение опережает ток) на угол .

Комплексное сопротивление катушки является чисто мнимым и положительн

Электрическая цепь с последовательным соединением элементов R, L и C

 

 

 

Пусть в заданной схеме с последовательным соединением элементов R, L и C (рис. 47) протекает переменный ток

.

По 2-му закону Кирхгофа для мгновенных значений функций получим уравнение в дифференциальной форме:

.

То же уравнение в комплексной форме получит вид:

Электрическая цепь с параллельным соединением элементов R, L и С

 

 

Пусть на входе схемы рис. 49 действует переменное напряжение:

По 1-му закону Кирхгофа для мгновенных значений функций получаем уравнение в дифференциальной форме:

То же уравнение в комплексной форме получит вид:

,

где  - комплексная проводимость,  - активная проводимость,  - реактивная индуктивная проводимость,  - реактивная емкостная проводимость,  - реактивная (эквивалентная) проводимость,  - модуль комплексной проводимости или полная проводимость,  - аргумент комплексной проводимости или угол сдвига фаз между напряжением и током на входе схемы. При  и φ>0 – цепь в целом носит активно-индуктивный характер, а при  и φ<0 – цепь в целом носит активно-емкостный характер.

Уравнение закона Ома для параллельной схемы будет иметь вид:

Резонансные явления в цепях несинусоидального тока В цепях несинусоидального тока резонансные режимы возможны для различных гармонических составляющих. Как и при синусоидальных токах, резонанс на к-й гармонике соответствует режиму работы, при котором к-е гармоники напряжения и тока на входе цепи совпадают по фазе, иначе говоря входное сопротивление (входная проводимость) цепи для  к-й гармоники вещественно.


Энергетический баланс в электрической цепи