Линейные электрические цепи Векторные диаграммы


Активные и реактивные составляющие токов и напряжений

Резонанс в электрических цепях

1. Определение резонанса

В электрической цепи, содержащей катушки индуктивности L и конденсаторы C, возможны свободные гармонические колебания энергии между магнитным полем катушки   и электрическим полем конденсатора . Угловая частота этих колебаний wo, называемых свободными или собственными, определяется структурой цепи и параметрами ее отдельных элементов R, L ,C.

Резонансным режимом цепи или просто резонансом называется явление увеличения амплитуды гармонических колебаний энергии в цепи, наблюдаемое при совпадении частоты собственных колебаний wo с частотой вынужденных колебаний w, сообщаемых цепи источником энергии (wo = w).

В резонансном режиме колебания энергии между магнитным и электрическим полями замыкаются внутри цепи, обмен энергией между источником и цепью отсутствует, а вся поступающая от источника энергия преобразуется в другие виды, т.е. электрическая цепь по отношению к источнику энергии ведет себя как чисто активное сопротивление R (активная проводимость G). На этом основании условие для резонансного режима можно сформулировать через параметры элементов схемы, а именно: входное сопротивление и, соответственно, входная проводимость схемы со стороны выводов источника энергии должна носить чисто активный характер: Zвх=Rвх; Yвх=Gвх; Xвх=0; Bвх=0; или в комплексной форме: Im[Zвх]=0, Im[Yвх]=0.

2. Резонанс напряжений

Резонанс в цепи с последовательным соединением источника энергии и реактивных элементов L и C получил название резонанса напряжений. Простейшая схема такой цепи показана на рис. 59. Особенности применения электролитических конденсаторов в выпрямительных устройствах При проектировании устройств электропитания схема фильтра и его параметры определяются исходя из требования сглаживания пульсаций выходного напряжения выпрямителя. На практике в фильтрах выпрямительных устройств наибольшее применение нашли электролитические конденсаторы (ЭК)

 

Комплексное входное сопротивление схемы:.

Условие резонанса напряжений: Xэ= XL - XC или wL =  , откуда w0 = - резонансная или собственная частота.

Из полученного равенства следует, что резонансного режима в цепи можно достичь изменением параметров элементов L и C или частоты источника w.

В резонансном режиме полное сопротивление схемы имеет минимальное значение и равно активному сопротивлению:

= R,

а ток максимален и совпадает по фазе с напряжением источника: I=E/R; j = 0.

Векторная диаграмма напряжений и тока показана на рис. 60.


 

Конденсатор.

Пусть напряжение на конденсаторе (рис. 4) описывается гармоническим рядом .

Коэффициент искажения кривой напряжения

(1)

Ток через конденсатор

.

Тогда соответствующий кривой тока коэффициент искажения

.

(2)

Сравнение (1) и (2) показывает, что , т.е. конденсатор искажает форму кривой тока по сравнению с напряжением, являясь сглаживающим элементом для последнего.


 

Отмеченное наглядно иллюстрирует рис. 5, на котором форма кривой напряжения ближе к синусоиде, чем форма кривой тока.

Сумма энергий магнитного и электрического полей равна:

Резонанс токов

Резонанс в цепи с параллельным соединением источника энергии и реактивных элементов L и C получил название резонанса токов. Простейшая схема такой цепи показана на рис. 64.

 

Комплексная входная проводимость схемы:

Условие резонанса токов:  или , откуда  - резонансная  (собственная) частота.

Из полученного равенства следует, что резонансного режима в цепи можно достичь изменением параметров элементов L и C или частоты источника w.

В резонансном режиме полная проводимость схемы равна активной проводимости и имеет минимальное значение:  = G, а ток источника также минимален и совпадает по фазе с напряжением источника ( j = 0): I =UY = UG.

Токи в ветвях с реактивными элементами IL=U(-jBL), IC =U(jBC) равны по модулю, противоположны по фазе и компенсируют друг друга, а ток в резисторе G равен току источника (I=IG=UG). Равные по модулю токи в реактивных элементах IL = IC могут значительно превосходить ток источника I при условии, что BL=BC>>G .

Резонанс в сложных схемах

Схемы замещения реальных электрических цепей могут существенно отличаться от рассмотренных выше простейших последовательной или параллельной схем. Хотя условие резонансного режима в общем виде [ Im(Zвх)=0 и Im(Yвх)=0 ] для любой схемы сохраняется, однако конкретное содержание этих уравнений будет определяться структурой схемы замещения.

  На рис. 67 приведена эквивалентная схема параллельного контура, в которой реальные элементы цепи (катушка и конденсатор) представлены последовательными схемами замещения.

Входное комплексное сопротивление схемы:

Условие резонанса:

 или 

Анализ этого уравнения показывает неоднозначную зависимость условия резонанса от значений параметров каждого элемента схемы.

Если сложная схема содержит в своей структуре несколько (более двух) разнородных реактивных элементов, то при изменении частоты в ней могут наблюдаться несколько резонансных режимов (как тока, так и напряжения) в зависимости от структуры схемы.

При соединении в звезду и отсутствии нейтрального провода фазные токи нагрузки не содержат гармоник, кратных трем (в соответствии с первым законом Кирхгофа сумма токов равна нулю, что невозможно при наличии этих гармоник). Соответственно нет этих гармоник и в фазных напряжениях нагрузки, связанных с токами законом Ома. Таким образом, при наличии гармоник, кратных трем, в фазных напряжениях генератора напряжение смещения нейтрали в симметричном режиме определяется этими гармониками


Энергетический баланс в электрической цепи