Числовая последовательность и ее предел

Линейная алгебра и аналитическая геометрия

Аналитический способ.

Чаще всего закон, устанавливающий связь между аргументом и функцией, задается посредством формул. Такой способ задания функции называется аналитическим.

Этот способ дает возможность по каждому численному значению аргумента x найти соответствующее ему численное значение функции y точно или с некоторой точностью.

Если зависимость между x и y задана формулой, разрешенной относительно y, т.е. имеет вид y = f(x), то говорят, что функция от x задана в явном виде.

Если же значения x и y связаны некоторым уравнением вида F(x,y) = 0, т.е. формула не разрешена относительно y, что говорят, что функция y = f(x) задана неявно.

Функция может быть определена разными формулами на разных участках области своего задания.

Аналитический способ является самым распространенным способом задания функций. Компактность, лаконичность, возможность вычисления значения функции при произвольном значении аргумента из области определения, возможность применения к данной функции аппарата математического анализа — основные преимущества аналитического способа задания функции. К недостаткам можно отнести отсутствие наглядности, которое компенсируется возможностью построения графика и необходимость выполнения иногда очень громоздких вычислений.

Словесный способ.

Этот способ состоит в том, что функциональная зависимость выражается словами. Найти неопределённый интеграл Математика примеры решения задач

Основными недостатками словесного способа задания функции являются невозможность вычисления значений функции при произвольном значении аргумента и отсутствие наглядности. Главное преимущество же заключается в возможности задания тех функций, которые не удается выразить аналитически.

Свойства функций.

1) Область определения функции и область значений функции.

Область определения функции - это множество всех допустимых действительных значений аргумента x (переменной x), при которых функция y = f(x) определена.

Область значений функции - это множество всех действительных значений y, которые принимает функция.

В элементарной математике изучаются функции только на множестве действительных чисел.

2) Нули функции.

Нуль функции – такое значение аргумента, при котором значение функции равно нулю.

3) Промежутки знакопостоянства функции.

Промежутки знакопостоянства функции – такие множества значений аргумента, на которых значения функции только положительны или только отрицательны.

4) Монотонность функции.

Возрастающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует большее значение функции.

Убывающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует меньшее значение функции.

5) Четность (нечетность) функции.

Четная функция - функция, у которой область определения симметрична относительно начала координат и для любого х из области определения выполняется равенство f(-x) = f(x). График четной функции симметричен относительно оси ординат.

Нечетная функция - функция, у которой область определения симметрична относительно начала координат и для любого х из области определения справедливо равенство f(-x) = - f(x). График нечетной функции симметричен относительно начала координат.

6) Ограниченная и неограниченная функции.

Функция называется ограниченной, если существует такое положительное число M, что |f(x)| ≤ M для всех значений x . Если такого числа не существует, то функция - неограниченная.

7) Периодическость функции.

Функция f(x) - периодическая, если существует такое отличное от нуля число T, что для любого x из области определения функции имеет место: f(x+T) = f(x). Такое наименьшее число называется периодом функции. Все тригонометрические функции являются периодическими. ( Тригонометрические формулы).

Изучив данные свойства функции Вы без проблем сможете исследовать функцию и по свойствам функции сможете построить график функции. Также посмотрите материал про таблицу истинности, таблицу умножения, таблицу Менделеева, таблицу производных и таблицу интегралов.

Векторы. Операции над векторами 

Вектор  может быть представлен в виде:

  (34)

где  – проекции вектора  на оси координат (координаты вектора), векторы   – это орты (единичные векторы) координатных осей (рис. 17).

 Векторную  формулу (34) можно писать сокращенно:   = {ax; ay; az}.

Орты  имеют проекции:

={1; 0; 0}, ={0; 1; 0}, ={0; 0; 1}.

Модуль (длина) вектора = {ax; ay; az} определяется по формуле:

 .  (35)

 Координатами точки М называют проекции ее радиус-вектора   (рис. 17). Обозначают координаты точки М(x; y; x) или М(xМ; yМ; xМ).

 Расстояние между точками А (xА , yА , zА) и B(xВ, yB, zB,) определяется по формуле: 

.  (36)

Евклидово пространство. Неравенство Коши-Буняковского. Линейные формы. Билинейные и квадратичные формы. Методы приведения квадратичной формы к каноническому виду. Закон инерции квадратичных форм. Положительно определенные квадратичные формы, критерий Сильвестра. Квадратичные формы в евклидовом пространстве. Отыскание ортонормированного базиса, в котором квадратичная форма имеет диагональный вид.
Способы задания функций аналитический способ